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Abstract The parallelization of irregular algorithms has not been as widely
studied as the one of regular codes. In particular, while there are many pro-
posals of parallel skeletons and libraries very well suited to regular algorithms,
this is not the case for irregular ones. This is probably due to the complexity of
finding common patterns, behaviors and semantics in these algorithms. This is
unfortunate, as the parallelization of irregular algorithms would benefit even
more than that of regular codes from the higher degree of abstraction provided
by skeletons. This work proposes to exploit the concept of domain defined on
some property of the elements to process in order to enable the simple and
effective parallelization of irregular applications. Namely, we propose to use
suchs domain both to decompose the computations in parallel tasks and to de-
tect and avoid conflicts between these tasks. A generic C++ library providing
a skeleton for multicore systems built on this idea is described and evaluated.
Our experimental results show that this library is a very practical tool for the
parallelization of irregular algorithms with little programming effort.

Keywords Parallel Skeletons · Amorphous Parallelism · Libraries

1 Introduction

During the past years, extensive research has been made on the best ways to
express parallelism. This has led to an evolution from low level tools [3] to a
variety of new higher level approaches. The large majority of these tools are
well suited to parallelize regular algorithms, whose computations are relatively
easy to distribute among different cores. Opposed to this regular parallelism,
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there is the amorphous data-parallelism [13], found in many irregular applica-
tions, i.e., those characterized by handling pointer-based data structures such
as graphs or lists. These applications require a different approach, as it is more
complex, and sometimes even impossible to find an a priori distribution of work
in them that avoids conflicts among the parallel threads of execution and bal-
ances their workload. Tracking these conflicts is also complicated by the lack
of regularity and the dynamic changes in the relations among the data items
that participate in a computation, synchronization mechanisms being usually
required before accessing each element to process.

As a result of this situation, the parallelization of irregular algorithms typ-
ically requires much more work from the programmer. One of the best options
to hide the complexity of the parallelization of irregular applications is the
use of skeletons [6]. Built on parallel design patterns, skeletons provide a clean
specification of the flow of execution, parallelism, synchronization and data
communications of typical strategies for the parallel resolution of problems.
Unfortunately, most skeleton libraries [7][8] focus on regular problems. Paral-
lel libraries that can support specific kinds of irregular algorithms exist [2][1],
but there are few general-purpose developments based on broad abstractions.

This work presents a parallelization strategy for irregular algorithms based
on a domain defined in terms of some property of the elements of the data
structure. This domain is used both to partition the computation, by assigning
the elements of different subdomains to different parallel tasks, and to avoid
conflicts between these tasks, by checking whether the accessed elements are
owned by the subdomain assigned to the task. Our proposal applies a novel
recursive scheduling strategy that avoids locking the partitions generated, in-
stead delaying work that might span partitions until later in the computation.
Among other benefits, this approach promotes the locality in the parallel tasks,
avoids the usage of locks, and thus the contention and busy waiting situations
often related to them, and provides guarantees on the maximal number of
abortions due to conflicts between parallel tasks during the execution of an
irregular algorithm. An implementation as a C++ library is also described
and evaluated.

The rest of this paper is structured as follows. Section 2 introduces the
concepts behind our domain-based computing proposal, while in Sect. 3 our
library is described. Section 4 describes the algorithms used in its programma-
bility and performance evaluation, performed in Sect. 5. Section 6 deals with
related work. Finally, Sect. 7 is devoted to conclusions and future work.

2 Domain-based parallel irregular algorithms

Many irregular algorithms have a workflow based on the processing of a series
of elements belonging to an irregular structure, called workitems. The ele-
ments to process are stored in a generic worklist, which is updated when new
workitems are found. Figure 1 shows the general workflow of these algorithms.
Line 1 fills the initial worklist with elements of the irregular structure. Any
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1 Worklist wl = get initial elements from(graph);
2 foreach(element e in wl) {
3 new work = do something(e);
4 if(new work != [])
5 wl.push(new work);
6 }

Fig. 1 Common pseudocode for an algorithm that uses irregular data structures

irregular structure could fit our generic description of the pseudocode and our
subsequent discussion. In what follows we will use the term graph, as it is a
very generic irregular data structure and many others can be represented as
graphs too. Some algorithms start with just one root element, while others
have an initial subset of the elements or even the full graph. The loop in Lines
2–6 processes each element of this worklist. Line 3 represents the main body
of the algorithm being implemented. If this processing results in new work
being needed, as checked in Line 4, it is added to the worklist in Line 5. This
is repeated until the worklist is empty.

An important characteristic of these algorithms is whether the workitems
must be processed in some specific order. Since non-ordered versions of irregu-
lar algorithms present more parallelism and scale better than the ordered ver-
sions [10], our subsequent discussion focuses on unordered algorithms. These
algorithms can be parallelized by having different threads operating on dif-
ferent elements of the worklist, provided that no conflicts appear during the
simultaneous processing of any two workitems.

The workitems found in irregular algorithms usually have properties (in the
following, property refers to a data item, such as for example a data member
in a class) defined on domains, such as names, coordinates or colors. Therefore
a sensible way to partition the work in an irregular algorithm is to choose a
property of this kind, and classify the workitems according to it. Specifically,
the domain of the property would be divided in subdomains and a paral-
lel task would process the workitems of each subdomain. The property used
should fulfill a few characteristics in order to attain good performance. If no
intrinsic property of the problem meets them, an additional property satisfying
them should be defined in the workitems for the sake of a good parallelization
following this scheme.

The first characteristic is that the property domain should be divisible in
as many subdomains as hardware threads are available, the subdomains being
as balanced as possible in terms of workitems associated. In fact, it would
be desirable to generate more subdomains than threads in order to provide
load balancing by assigning new subdomain tasks to threads as they finish
their previous task. Second, if the processing of a workitem generates new
workitems, it is desirable that the generated workitems belong to the same
subdomain as their parent. We call this characteristic, which depends also on
the nature of the operation to apply on the workitems, affinity of children to
parents. If this were not the case, either the rule of ownership of the workitems
by tasks depending on the subdomain they belong to would be broken, or in-
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tertask communication would be required to reassign these workitems to the
task that owns their subdomain. Third and last, there is the proximity char-
acteristic; that is, that the larger the similarity in the values of the chosen
property, the shorter the distance between the associated workitems in the
graph. Very often the processing of a workitem requires accessing part of its
neighborhood in the graph. If some element(s) in this neighborhood belong to
other tasks the processing is endangered by potential parallel modifications by
other threads. Nevertheless, if all the elements required belong to the subdo-
main of the workitem that started the processing, everything is owned by the
task for that subdomain and the processing can proceed successfully. This way,
if the rule of ownership is fulfilled, i.e, all the elements of the graph that belong
to a certain subdomain are owned by the same task, subdomains can be used
not only to partition work, but also to identify potential conflicts. The process
will be besides efficient if the property chosen to define the work domains im-
plies proximity for the elements that belong to the same subdomain. For this
reason, in algorithms where the processing of a workitem requires accessing
its neighborhood, the characteristics of the affinity of children to parents and
proximity are very desirable.

2.1 A novel parallelization scheme based on domains

The data-centric partitioning and work assignment just presented is a basic
idea that can be put into practice in very different ways. We propose here a
scheme based on the recursive subdivision of a domain defined on the elements
of the irregular data structure, so that the workitems of each subdomain are
processed in parallel, and the potential conflicts among them are exclusively
detected and handled using the concept of membership of the subdomain. Lo-
cality of reference in the parallel tasks is naturally provided by the fact that
most updates in irregular applications are usually restricted to small regions of
the shared heap [13][16]. Our scheme further reinforces locality if the domain
used in the partitioning has the proximity characteristic, so that the elements
associated with a subdomain, and thus with a task, are nearby. The processing
of the workitems begins in the lowest level of subdivision, where there is the
maximum number of subdomains, and thus to parallel tasks. The workitems
that cannot be processed within a given subdomain, typically because they
require manipulations of items associated with other subdomains, are later
reconsidered for processing at higher levels of decomposition using larger sub-
domains. We now explain in detail our parallelization method, illustrated in
Fig. 2.

2.1.1 Recursive subdivision

An algorithm starts with an initial worklist, containing nodes from the whole
graph domain, as shown in the initial step in Fig. 2. Before doing any process-
ing, the domain is recursively subdivided until there are enough subdomains
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Fig. 2 Structure of the domain-based parallelization of irregular algorithms

to exploit all the cores available. Over-decomposition, i.e., generating more
subdomains than cores, can be applied in order to enable load balancing by
means of work-stealing mechanisms. The domain subdivisions implicitly par-
tition both the graph and the worklist. This logical partitioning can optionally
give place to a physical partitioning. That is, the graph and/or the worklist
can be partitioned in (mostly) separate data structures so that each one corre-
sponds to the items belonging to a given subdomain and can be manipulated
by the associated task with less contention and improved locality. We talk
about mostly separate structures because for structures such as the graph,
tasks should be able to access portions assigned to other tasks. It is up to
the implementation strategy to decide which kind of partitioning to apply to
each data structure. In our abstract representation, for simplicity, we show 2
subdivisions to get 4 different subdomains, in Steps 1 and 2. Then, in Step 3,
a parallel task per subdomain is launched, whose local worklist contains the
elements of the global worklist that fall in its subdomain. During the process-
ing of each workitem two special events can happen: an access to an element
outside the local subdomain, and the generation of new workitems to process.
We describe the approach proposed for these two situations in turn.

2.1.2 Conflict detection

In many algorithms, the processing of a workitem requires accessing a given
set of edges and nodes around it. This set, called the neighborhood, is often
found dynamically during the processing and its extent and shape can vary
for different workitems. This way we must deal with the possibility that the
neighborhood of a workitem reaches outside the subdomain of the associated
task. Accessing an element outside the local subdomain is a risk, since it could
be in an inconsistent state or about to be modified by another task. Thus, we
propose that always when a new element in the neighborhood of a workitem
is accessed for the first time, its ownership of the local domain is checked. If
the element belongs to the domain, the processing proceeds. Otherwise there
is a potential conflict and the way to proceed depends on the state of our
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processing. If the operation is cautious [18], that is, it reads all the elements
of its neighborhood before it modifies any of them, all it needs to do when it
finds an element owned by another task is to leave, as no state of the problem
will have been modified before. Otherwise, the modifications performed would
need to be rolled back.

When a task fails to process a workitem because part of its neighborhood
falls outside its domain, it puts the workitem in a pending list to be processed
later, which is different from the local worklist of workitems to process. The
processing of this pending list will be discussed in Sect. 2.1.4.

2.1.3 Generation of new workitems

The new workitems generated by a task that belong to the local subdomain
are simply added to its local worklist, so that the task will process them
later. The new workitems outside the local subdomain can be added to the
pending list, so that their processing is delayed to later stages, exactly as with
workitems whose neighborhood extends outside the local subdomain. Another
option is to push them onto the worklists associated with their domains, so
they are processed as soon as possible. This alternative allows us to parallelize,
following our proposal, algorithms that start with a few workitems —even a
single one— in a single subdomain and expand their working set from there.

2.1.4 Domain merging

When a subdomain task empties its local worklist, it finishes and the pro-
cessing can proceed to the immediately higher level of domain subdivision,
as shown in Step 4 in Fig. 2. The implementation of the change of level of
processing can be synchronous or not. In the first case, the implementation
waits for all the tasks for the subdomains of a given level to finish before build-
ing and launching the tasks for the domains in the immediately upper level.
In an asynchronous implementation, whenever the two child subdomains of a
parent domain finish their processing, a task is built and scheduled so that it
will work on this parent domain. In either case, both child domains of a given
parent subdomain are rejoined, forming that parent domain, and the pending
lists generated in the child subdomains are also joined forming the worklist of
the task for the parent domain. An efficient implementation should perform
the merging, and schedule for execution the task associated with the parent
domain, in one of the cores in which the children run in order to maximize lo-
cality. When it runs, the task associated to the parent domain tries to process
the workitems whose processing failed in the children domains. The task will
successfully process those workitems whose neighborhood did not fit in any of
the children subdomains, but which fits in the parent domain. Typically the
processing of some workitems will fail again because their neighborhood falls
also outside this domain. These workitems will populate the pending list of
the task. This process takes place one level at a time as the processing returns
from the recursive subdivision, until the initial whole domain is reached, and
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the remaining elements are processed, which is depicted as the final Step 5
in Fig. 2. This way, the tasks for all the joined regions —except the topmost
one— are processed in parallel.

2.1.5 Discussion

As we have seen, this scheme avoids the need of locks both on the elements
of the graph and on the subdomains and implied partitions generated, thus
avoiding the busy waiting and contention problems usually associated to them.
Also, its strategy to deal with conflicts provides an upper bound for the num-
ber of attempts to process workitems whose neighborhood extends outside the
partition assigned to their tasks. Those workitems are considered at most once
per level of subdivision of the original domain, rather than being repetitively
reexamined until their processing succeeds. Both characteristics are very de-
sirable, particularly as the number of cores, and therefore parallel tasks and
potential conflicts, increases. This strategy has though the drawback of even-
tually serializing the processing of the last elements. But because of the re-
joining process, which tries to parallelize as much as possible the processing
of the workitems whose processing failed in the bottom level subdomains, the
vast majority of the work is performed in parallel. In fact, as we will see in
Sect. 5, in our tests only a very small percentage of the workitems present
conflicts that prevent their parallel processing. This also confirms that opti-
mistic parallelization approaches such as ours are very suitable for irregular
applications [15][14].

3 The library

We have developed a C++ library that supports our domain-based strategy
to parallelize irregular applications in shared-memory systems. Programmers
are free to use just the library components, derive from them or implement
their own from scratch, as long as they meet the interface requirements. Our
library includes template classes for graphs, domains, and worklists of elements
with the usual semantics. Its most characteristic component is the algorithm
template that implements the parallelization approach just described which is

void parallel_domain_proc<bool redirect=false>

(Graph, Worklist, Domain, Operation)

where the name of each parameter indicates the kind of object it expects.
This function is in charge of the domain splitting process, task creation and
management, splitting and merging the worklists, getting elements from them
to run the operation, and adding to the pending worklists workitems whose
neighborhood extends outside the current domain. This skeleton partitions the
worklists onto independent containers, so that each parallel task has its own
separate worklist. Nonetheless, the partition of the graph is only logical, that
is, it is virtually provided by the existence of multiple subdomains, there being
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1 bool contains(Element∗ e)
2 bool is divisible()
3 void split(Domain& s1, Domain& s2)

Fig. 3 Required interface for a Domain class

a single unified graph object accessed by all the tasks. This implies that our
library graphs can be safely read and updated in parallel, as long as no two
accesses affect the same element simultaneously —unless they are all reads.

First, the domain, whose class must support the interface shown in Fig. 3,
is recursively split, creating several leaf domains. The subdivision process stops
when either a domain is not divisible or parallel domain proc decides there
are enough tasks for the hardware resources available. This is the same ap-
proach followed by popular libraries such as [20]. Our current implementation
partitions the domain until there are at least two subdomains per hardware
thread. The aim of the over-decomposition is to balance the load among the
threads, as they take charge of new tasks as they finish the previous one.
The initial workload is distributed among these subdomains, assigning each
workitem to a subdomain depending on the value of its data. Then a task is
scheduled for each subdomain, which will process the worklist elements be-
longing to that subdomain and which will have the control on the portion of
the graph that belongs to that domain.

The Operation to perform on the workitems is provided by the user as
a functor, a function pointer or a C++11 lambda function with the form
void op(Workitem ∗ e, Worklist& wl, Domain& s). These parameters, which
will be provided by our algorithm template in each invocation, are the current
workitem to process, the local worklist and the current subdomain. The local
worklist is supplied to receive the new workitems created by the operation.
When accessing the neighbors of a workitem, the operation is responsible for
checking whether they belong to the local subdomain s. When this is not the
case, the operation must throw an exception of a class provided by our library.
This exception, which is captured by our algorithm template, tells the library
to store the current workitem in the pending list, so it can be processed when
the subdomains are joined. The domain classes provided by our library offer
a method that automatically throws this exception when the element checked
does to belong to them.

The boolean template parameter redirect controls the behavior of the al-
gorithm template with respect to the workitems whose processing fails because
their neighborhood extends outside the local subdomain. When redirect is
false —which is its default— they are simply pushed in the task pending
list. When it is true, the behavior depends on the state of the task associated
with the workitem subdomain at the bottom level of subdivision. If this task
or a parent of it is already running, the workitem is also stored in the pending
list of the task that generated it. Otherwise, it is stored in the local worklist
of the task that owns its subdomain, which is then scheduled for execution.
To facilitate the redirection of workitems, this configuration of the algorithm
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Fig. 4 Example of an edge contraction of the
Boruvka algorithm

1 Graph g = read graph();
2 Forest mst = g.nodes();
3 Worklist wl = g.nodes();
4 foreach(Node n in wl) {
5 Node m = min weight(n, g.

get out edges(n));

6 Node l = edge contract(n, m);
7 mst.add edge(n, m);
8 wl.add(l);
9 }

Fig. 5 Pseudocode of the Boruvka minimum
spanning tree algorithm

template does not schedule for execution tasks whose worklists are empty. No-
tice that redirect is a performance hint, as all the workitems will be correctly
processed no matter which is its value. Redirection mostly benefits algorithms
in which the initial workitems belong to a few bottom level subdomains, and
where the processing gradually evolves to affect more subdomains.

The skeleton builds the worklist of the tasks associated to non-bottom
subdomains by merging the pending lists of their respective children. This
way, these tasks try to process the elements that could not be processed in
their children. This process happens repetitively until the root of the tree of
domains —i.e., the initial domain provided by the user—, is reached.

4 Tested algorithms

The benchmarks used in the evaluation are now briefly described. As of now
our library does not provide mechanisms to rollback computations. Therefore
all the algorithms tested are cautious —i.e., they do not need to restore data
when an operation fails due to the discovery of a potential conflict.

4.1 Boruvka

Boruvka’s algorithm computes the minimal spanning tree through successive
applications of edge-contraction on the input graph. In edge-contraction, an
edge is chosen from the graph and a new node is formed with the union of the
connectivity of the incident nodes of the chosen edge, as shown in Fig. 4. In
the case that there are duplicate edges, only the one with smallest weight is
carried through in the union. Boruvka’s algorithm proceeds in an unordered
fashion. Each node performs edge contraction with its nearest neighbor. This
is in contrast with Kruskal’s algorithm where, conceptually, edge-contractions
are performed in increasing weight order.

The pseudocode for the algorithm is shown in Fig. 5. First, it reads the
graph in Line 1, and fills the worklist with all the nodes of the graph. The
nodes of the initial MST are the same as those of the graph, and they are
connected in the loop in Lines 4 to 9. For each node, the minimum weighted
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Fig. 6 Retriangulation of cavities around
bad triangles

1 Mesh m = read mesh();
2 Worklist wl = m.bad triangles();
3 foreach(Triangle t in wl) {
4 Cavity c = new Cavity(t);
5 c.expand();
6 c.retriangulate();
7 m.update mesh(c);
8 wl.add(c.bad triangles());
9 }

Fig. 7 Pseudocode of the Delaunay mesh re-
finement algorithm

node from it to its neighbors is selected in Line 5. Then, in line 6, this edge
is contracted: it is removed from the graph, added to the MST in Line 7, and
one node represents now the current node and its neighbor. This new node is
added to the worklist in Line 8.

The parallelism available in this algorithm decreases over time. At first, all
the nodes whose neighborhoods do not overlap can be processed in parallel, but
as it proceeds the graph gets smaller, so there are fewer nodes to be processed.

4.2 Delaunay mesh refinement

This benchmark implements the algorithm described in [5]. A 2D Delaunay
mesh is a triangulation of a set of points that fulfills the condition that for
any triangle, its circumcircle does not contain any other point from the mesh.
A mesh refinement has the additional constraint of not having any angle with
less than 30 degrees. This algorithm takes as input a Delaunay mesh that may
contain triangles not meeting the constraint, which are called bad triangles.
It produces an output refined mesh by iteratively re-triangulating the affected
positions of the mesh. Figure 6 shows an example of a refined mesh.

The pseudocode for the algorithm is shown in Fig. 7, and it works as follows.
Line 1 reads a mesh definition and stores it as a Mesh object. From this object,
we can get the bad triangles as shown in Line 2, and save them as an initial
worklist in wl. The loop between Lines 3 and 9 is the core of the algorithm.
Line 4 builds a Cavity, which represents the set of triangles around the bad
one that are going to be retriangulated. In Line 5 this cavity is expanded so
that it covers all the affected neighbors. Then the cavity is retriangulated in
Line 6, and the old cavity is substituted with the new triangulation in Line 7.
This new triangulation can in turn have created new bad triangles, which are
collected in Line 8 and added to the worklist for further processing.

The triangles whose neighborhood does not overlap can be processed in
parallel, because there will be no conflicts when modifying them. When the
algorithm starts, chances are that most bad triangles can be processed in
parallel.
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1 map<vertex, int> color; // Color for each vertex
2 map<vertex, bool> process; // Stores whether each vertex requires more processing
3 Graph g = read graph();
4 Worklist wl = g.nodes();
5
6 foreach(Node n in g.nodes) {
7 color[n] = i;
8 process[n] = true;
9 }

10
11 foreach(Node n in wl) {
12 if(process[n]) {
13 do process(n);
14 }
15 }
16
17 do process(Node n) {
18 process[n] = false;
19 foreach(edge e in n.edges()) {
20 if(color[e.source] < color[e.destination]) {
21 color[e.destination] = color[e.source];
22 do process(e.destination);
23 }
24 else if(color[e.source] > color[e.destination]) {
25 color[e.source] = color[e.destination];
26 restart loop from start of the list;
27 }
28 }
29 }

Fig. 8 Pseudocode of the graph labelling algorithm

4.3 Graph labeling

Graph component labeling involves identifying which nodes in a graph belong
to the same connected cluster. We have used the CPU algorithm presented
in [11], whose pseudocode is shown in Fig. 8. The algorithm initializes the
colors of all vertices to distinct values in Lines 6 to 9. It then iterates over
the vertex set V and starts the labeling procedure for all vertices that have
not been labelled yet, in Lines 11 to 15. The labeling procedure iterates over
the edge set of each vertex, comparing in Line 20 its color value with that of
its neighbors. If it finds that the color value of a neighbor is greater, it sets it
to the color of the current vertex and recursively calls the labeling procedure
on that neighbor in Lines 21 and 22. If the neighbor has a lower color value,
Lines 25 sets the color of the current vertex to that of the neighbor and Line 26
starts iterating over the list of edges of the node from the beginning again.

4.4 Spanning tree

This algorithm computes the spanning tree of an unweighted graph. It starts
with a random root node, and it checks its neighbors and adds to the tree those
not already added. The processing continues from each one of these nodes,
until the full set of nodes has been checked and added to the graph. This
algorithm is somewhat different from the ones previously explained, because
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1 Graph g = read graph();
2 Tree mst;
3 Worklist wl = g.random node();
4 foreach(Node n in wl) {
5 foreach(Neighbor nb of n) {
6 if(!nb.in mst) {
7 mst.add edge(n, nb);
8 wl.add(nb);
9 }

10 }
11 }

Fig. 9 Pseudocode of the spanning tree algorithm

it starts with just one node in the worklist, while the others have an initial
worklist with a set of nodes distributed over all the domain of the graph. The
pseudocode is shown in Fig. 9.

The aforementioned steps are performed as follows: Line 1 reads the graph,
and Lines 2 and 3 create an empty tree and a worklist with a random node
respectively. The loop in Lines 5 to 10 adds to the MST the neighbors of the
current node that are not already in it, and then inserts such neighbor in the
worklist for further processing.

The parallelism in this algorithm works inverse to Boruvka. As it starts
with a single node, the initial stages of the algorithm are done sequentially.
As more nodes are processed, eventually nodes outside the initial domain are
checked, allowing new parallel tasks to start participating in the processing.

5 Evaluation

All the algorithms required little work to be parallelized using our library.
The main loops have been substituted with an invocation to the parallel

domain proc algorithm template, and the only extra lines are for initializing
the Domain and checking whether a node belongs to a subdomain.

The impact of the use of an approach on the ease of programming is not
easy to measure. In this section two quantitative metrics are used for this
purpose: the SLOC (source lines of code excluding comments and empty lines)
and the cyclomatic number [17], which is defined as V = P + 1, where P is
the decision points or predicates in a program. The smaller the V , the less
complex the program is.

We measured the whole source code for each algorithm and version. The
relative changes of these metrics are shown in Fig. 10 as the percentual dif-
ference between the parallel and the sequential version. It can be seen that
despite the irregularity of the algorithm, small changes are required in order
to go from a sequential to a parallel version, and the growth of any complex-
ity measure is at most 3% in the parallel version. In fact, in the case of the
cyclomatic number, it is often lower for the parallel version than for the se-
quential one. This is because there are conditionals that are hidden by the
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Fig. 10 Relative values of the SLOCs and the cyclomatic number of the parallelized version
with respect to the sequential one

library, such us the check for nonexistent workitems. This way, the simplicity
of the parallelization of irregular algorithms using our library is outstanding.

The speed-ups achieved, calculated with respect to the serial version, are
shown in Fig. 11. The system used has 12 AMD Opteron cores at 2.2 GHz
and 64 GB. Intel icpc v12 with −fast optimization level was used. The inputs
of the algorithms were: (1) a graph defining an street map with 6 · 106 nodes
and 15 · 106 edges, taken from the DIMACS shortest path competition [23],
for Boruvka; (2) a mesh triangulated with Delaunay’s triangulation algorithm
with 105 triangles, taken from the Galois project input massive.2 [15], for De-
launay mesh refinement; (3) a disjoint graph with 3·106 nodes and 8·106 edges
distributed on at least 104 disconnected clusters, similar to those in [11], for
labeling; and (4) a regular grid with 3000 height and 3000 width for spanning,
where each node but those on the limits had 4 neighbors. The domain defined
for Boruvka, Delaunay Refinement and Spanning Tree was a bi-dimensional
domain covering all the nodes of the graphs. For Graph Labeling, a linear do-
main was used. The parallel times were measured using the default behavior
of generating two bottom-level subdomains per core used. Since the number of
subdomains generated by our skeleton is a power of two, 32 subdomains were
generated for the runs on 12 cores.

The minimal slowdown in Fig. 11 for a single processor shows that the
overheads of the skeleton are very small. This was expected because the ir-
regular access patterns characteristic of these algorithms, coupled with the
small number of computations in most of these benchmarks, turn memory
bandwidth and latency into the main factor limiting their performance.

The speedups achieved are very dependent on the processing performed
by each algorithm. Namely, labeling and spanning, which do not modify the
graph structure, are the benchmarks that scale better. Let us remember that
labeling only modifies data (the color of each node), while spanning inspects
the graph from some starting point just adding a single edge to the output
graph whenever a new node is found. Delaunay refinement operates on a neigh-
borhood of the graph removing and adding several nodes and edges, but it also
performs several computations. Finally Boruvka is intensive on graph modi-
fications, as it involves minimal computations, and it removes and adds an
enormous number of nodes and, particularly, edges. This way these two latter
algorithms suffer from more contention due to synchronizations required for
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the simultaneous deletions and additions of their parallel tasks on the shared
graph. An additional problem is that parallelization worsens the performance
limitations of these algorithms due to the memory bandwidth because of the
increasing number of cores simultaneously accessing the memory. For these
reasons these are typical speedups for these applications [22][14].

Speedups are also very dependent on the degree of domain over-decomposition
used. Figure 12 shows the speedup achieved using 8 cores with several levels of
over-decomposition with respect to the execution without over-decomposition,
that is, the one that generates a single bottom-level subdomain per core. In
the figure, n levels of over-decomposition imply 2n subdomains per core. This
way the results shown in Fig.s ?? and 11 correspond to the first bar, with one
level of over-decomposition. We can see that just by not over-decomposing the
input domain, Delaunay refinement gets a very important performance boost,
while spanning successfully exploits large levels of over-decomposition.

Figure 13 shows the percentage of elements that fall outside the domain,
and therefore have to be deferred to upper levels of domain subdivision, also
for runs with 8 cores. It is interesting to see that even when we are not using a
small number of cores, and thus of subdivisions of the domain, the number of
workitems aborted never exceeds 3% in the worst case. These values help us
explain the results in Fig. 12. Labeling has no conflicts because in its case the
role of the domain is only to partition the tasks; when two tasks operate si-
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multaneously on an area, the one with the smallest color will naturally prevail.
So over-decomposition does not play any role with respect to conflicts in this
algorithm; it only helps its load balancing. As for Delaunay refinement, even
when only 3% of its workitems result in conflicts, this ratio is proportionally
much higher than for the other algorithms, and their individual cost is also
larger. This way, although decreasing over-decomposition might reduce load
balancing opportunities, this is completely offset by the important reduction in
the number of conflicts. Spanning is the second algorithm in terms of conflicts,
but two facts decrease their importance for this code. First, this algorithm be-
gins with a single workitem from which the processing of neighboring domains
are later spawned. This way if there is no over-decomposition some threads
begin to work when the processing reaches their domains, and stop when their
domain is completely processed. This leads to a very poor usage of the threads.
Over-decomposing allows threads that finish with a given subdomain to begin
working on new domains reached by the processing. The second fact is that de-
layed workitems because of conflicts often find that they require no additional
processing when they are reconsidered in an upper level of subdivision because
they were already connected to the spanning tree by their owner task at the
bottom level. Finally, Boruvka has quite few conflicts and their processing
cost is neither negligible nor as large as in Delaunay refinement. Thus, a small
degree of over-decomposition is the best in terms of balancing the amount of
work among the threads (potentially more even the more subdomains) and
the number of conflicts (also more the more subdomains).

6 Related work

One of the approaches to deal with amorphous data parallel algorithms is
Hardware or Software Transactional Memory (HTM/STM)[12]. HTM limits,
sometimes heavily, the maximum transaction size because of the hardware
resources it relies on. The Blue Gene/Q was the first system to incorporate
it, and although it is present in some Top500 supercomputers, its adoption is
not widely spread. Several implementations exist for STM [9][21], but their
performance is often not satisfactory [4]. With STM, the operations on an
irregular data structure are done inside transactions, so when a conflict is
detected, as overlapping neighborhoods for two nodes, it can be rolled back.

Another hardware option is Thread Level Speculation (TLS) [19], which
from a sequential code creates several parallel threads, and enforces the ful-
fillment of the semantics of the source code using hardware support. But, just
as the solutions based on transactional memory, it cannot take advantage of
the knowledge about the data structure as ours does.

The Galois system [15] is a framework for this kind of algorithm that relies
on user annotations that describe the properties of the operations. Its inter-
face can be simplified though, if only cautious and unordered algorithms are
considered. Galois has been enhanced with abstract domains [14], defined as
a set of abstract processors optionally related to some topology, in contrast
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to our concept of set of values for a property of the items to process. Also,
these domains are only an abstraction to distribute work, as opposed to our
approach, where domains are the fundamental abstraction to distribute work,
schedule tasks and detect conflicts, thus eliminating the need of locks and busy
waits found in [14]. Neither do we need over-decomposition to provide enough
parallelism, which allows for higher performance in algorithms with costly
conflicts, as Delaunay refinement shows in Fig. 12. Finally, lock-based man-
agement leads conflicting operations in [14] to be repeatedly killed and retried
until they get the locks of all the abstract processors they need. Nevertheless,
the computations that extend outside the current domain in our system are
just delayed to be retried with a larger subdomain. This way the number of
attempts of a conflicting task is at most the number of levels of subdivision
of the original domain. With the cautions that the input and implementation
languages are not the same and that they stop at 4 cores, our library and
Galois yield similar speedups for Delaunay in a comparable system [14].

Chorus [16] defines an approach for the parallelization of irregular applica-
tions based on object assemblies, which are dynamically defined local regions
of shared data structures equipped with a short-lived, speculative thread of
control. Chorus follows a bottom-up strategy that starts with individual ele-
ments, merging and splitting assemblies as needed. These assemblies have no
relation to property domains and their evolution, i.e., when and with whom
to merge or split, must be programmatically specified by the user. We use a
top-down process based on an abstract property, and only a way to subdivide
its domain and to check the ownership are needed. Also, the evolution of the
domains is automated by our library and it is oblivious to the algorithm code.
Moreover, Chorus is implemented as a language, while we propose a regular
library in a widely used language, which favors the learning curve and code
reusability. Also, opposite to Chorus’ strategy, ours does not require locks,
which favors scalability, and there are no idle processes, so the need for over-
decomposition is reduced. Finally, and in part due to these differences, our
approach performs noticeably better on the two applications tested in [16].

Partitioning has also been applied to an irregular application in [22]. Their
partitioned code is manually written and it is specifically developed and tuned
for the single application they study, Delaunay mesh generation. Additionally,
their implementation uses transactional memory for synchronizations.

7 Conclusions

Amorphous data parallelism, found in algorithms that work on irregular data
structures is much harder to exploit than the parallelism in regular codes.
There are also few studies that try to bring structure and common concepts
that ease the parallelization of these algorithms. In this paper we explore
the concept of domain on the data to process as a way to partition work
and avoid synchronization problems. In particular, our proposal relies on (1)
domain subdivision as a way to partition work among tasks, on (2) domain
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membership, as a mechanism to avoid synchronization problems between tasks,
and on (3) domain merging to join worksets of items whose processing failed
within a given subdomain, in order to attempt their processing in the context
of a larger domain.

An implementation of our approach based on a skeleton operation and a
few classes with minimal interface requirements is also presented. An evalua-
tion using several benchmarks indicates that our algorithm template allows to
parallelize irregular problems with little programmer effort, providing speed-
ups similar to those typically seen for these applications in the bibliography.

As for future work, we plan to enable providing more hints to the library to
improve load balancing and performance. Also, methods to backup data to be
modified so that they can be restored later automatically by the library if the
computation fails can be added in order to support non cautious operations.
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